[ Home ] [ Up ] [ Info ] [ Mail ]

Example. Let u = e-x(x sin y - y cos y)


(a) Prove u = e-x(x sin y - y cos y) is analytic

(b) Find the conjugate harmonic function of u i.e. find a function v such that f(z) = u + iv is analytic

(c) Find f(z)

 

(a)     Prove u = e-x(x sin y - y cos y) is analytic


            ∂u/∂x = (e-x)(sin y) + (-e-x)(x sin y - y cos y) = e-x sin y - xe-x sin y + ye-x cos y

1)        2u/∂x2 = ∂(e-x sin y - xe-x sin y + ye-x cos y)/∂x = -2e-x sin y + xe-x sin y - ye-x cos y

            ∂u/∂y = e-x (x cos y + y sin y - cos y) = xe-x cos y + ye-x sin y - e-x cos y

2)        2u/∂y2 = ∂(xe-x cos y + ye-x sin y - e-x cos y)/∂y = -xe-x sin y + 2e-x sin y + ye-x cos y


Adding 1) and 2) gives ∂2u/∂x2 + ∂2u/∂y2 = 0 . Thus u is harmonic.


 

(b)    Find the conjugate harmonic function of u


From the Cauchy-Riemann equations we get

3)        ∂v/∂y = ∂u/∂x = e-x sin y - xe-x sin y + ye-x cos y

4)        ∂v/∂x = - ∂u/∂y = e-x cos y - xe-x cos y - ye-x sin y


We now integrate 3) with respect to y, keeping x constant:

5)        v = - e-x cos y + xe-x cos y + e-x(y sin y + cos y) + F(x)

                        = ye-x sin y + xe-x cos y + F(x)

where F(x) is an arbitrary real function of x.


We now substitute 5) into 4), taking ∂v/∂x of 5)

            -ye-x sin y - xe-x cos y + e-x cos y + F'(x) = e-x cos y - xe-x cos y - ye-x sin y

or

            F'(x) = 0 .


Thus F(x) = c, a constant.


Substituting F(x) = c into 5) we get


            v = e-x(y sin y + x cos y) + c


 

(c)      Find f(z)


To find f(z) we employ the following theorem:


Theorem 1. f(z) = u(z, 0) + i v(z, 0)


Derivation.


            f(z) = f(x+ iy) = u(x, y) + i v(x, y)

 

Putting y = 0, one obtains       f(x) = u(x, 0) + i v(x, 0)

Replacing x by z, we get        f(z) = u(z, 0) + i v(z, 0)


Solution. Applying Theorem 1 we get


u(z, 0) = 0

v(z, 0) = ze-z

f(z) = u(z, 0) + i v(z, 0) = ze-z,

apart from an arbitrary additive constant.


If only u (or v) is known another procedure can be used that employs the following theorem:


Theorem 2. If f(z) = u(x, y) + i v(x, y)

 

            f(z) = 2u(z/2, -iz/2) + constant 


and


            f(z) = 2i v(z/2, -iz/2) + constant




Alternative method for finding f(z) and the conjugate harmonic function. An alternative method for finding the conjugate harmonic function employs the following theorem:


Theorem 3. Let u1 = ∂u/∂x and u2 = ∂u/∂y. Then


            f '(z) = u1(z, 0) - i u2(z, 0)


Derivation. We have already shown that


             ole.gif  

 

Putting y = 0, we get              f '(x) = u1(x, 0) - i u2(x, 0)

Then replacing x by z we obtain         f '(z) = u1(z, 0) - i u2(z, 0)



Solution. Since u = e-x(x sin y - y cos y) , we have


            u1(x, y) = ∂u/∂x = e-x sin y - xe-x sin y + ye-x cos y

            u2(x, y) = ∂u/∂y = xe-x cos y + ye-x sin y - e-x cos y


Applying Theorem 3 we get


            f '(z) = u1(z, 0) - i u2(z, 0) = 0 - i(ze-z - e-z) = - i(ze-z - e-z)


Integrating with respect to z we obtain, except for a constant,

 

            f(z) = i ze-z


If one then expands the right side in terms of x and y, one obtains


            f(z) = e-x(x sin y - y cos y) + i e-x(y sin y + x cos y)


giving


            v = e-x(y sin y + x cos y)


 

Source: Spiegel. Complex Variables (Schaum). p. 73, 74, 85. Prob. 7, 8, 40, 101


[ Home ] [ Up ] [ Info ] [ Mail ]