Example. Let u = e-x(x sin y - y cos y)
(a) Prove u = e-x(x sin y - y cos y) is analytic
(b) Find the conjugate harmonic function of u i.e. find a function v such that f(z) = u + iv is analytic
(c) Find f(z)
(a) Prove u = e-x(x sin y - y cos y) is analytic
∂u/∂x = (e-x)(sin y) + (-e-x)(x sin y - y cos y) = e-x sin y - xe-x sin y + ye-x cos y
1) ∂2u/∂x2 = ∂(e-x sin y - xe-x sin y + ye-x cos y)/∂x = -2e-x sin y + xe-x sin y - ye-x cos y
∂u/∂y = e-x (x cos y + y sin y - cos y) = xe-x cos y + ye-x sin y - e-x cos y
2) ∂2u/∂y2 = ∂(xe-x cos y + ye-x sin y - e-x cos y)/∂y = -xe-x sin y + 2e-x sin y + ye-x cos y
Adding 1) and 2) gives ∂2u/∂x2 + ∂2u/∂y2 = 0 . Thus u is harmonic.
(b) Find the conjugate harmonic function of u
From the Cauchy-Riemann equations we get
3) ∂v/∂y = ∂u/∂x = e-x sin y - xe-x sin y + ye-x cos y
4) ∂v/∂x = - ∂u/∂y = e-x cos y - xe-x cos y - ye-x sin y
We now integrate 3) with respect to y, keeping x constant:
5) v = - e-x cos y + xe-x cos y + e-x(y sin y + cos y) + F(x)
= ye-x sin y + xe-x cos y + F(x)
where F(x) is an arbitrary real function of x.
We now substitute 5) into 4), taking ∂v/∂x of 5)
-ye-x sin y - xe-x cos y + e-x cos y + F'(x) = e-x cos y - xe-x cos y - ye-x sin y
or
F'(x) = 0 .
Thus F(x) = c, a constant.
Substituting F(x) = c into 5) we get
v = e-x(y sin y + x cos y) + c
(c) Find f(z)
To find f(z) we employ the following theorem:
Theorem 1. f(z) = u(z, 0) + i v(z, 0)
Derivation.
f(z) = f(x+ iy) = u(x, y) + i v(x, y)
Putting y = 0, one obtains f(x) = u(x, 0) + i v(x, 0)
Replacing x by z, we get f(z) = u(z, 0) + i v(z, 0)
Solution. Applying Theorem 1 we get
u(z, 0) = 0
v(z, 0) = ze-z
f(z) = u(z, 0) + i v(z, 0) = ze-z,
apart from an arbitrary additive constant.
If only u (or v) is known another procedure can be used that employs the following theorem:
Theorem 2. If f(z) = u(x, y) + i v(x, y)
f(z) = 2u(z/2, -iz/2) + constant
and
f(z) = 2i v(z/2, -iz/2) + constant
Alternative method for finding f(z) and the conjugate harmonic function. An alternative method for finding the conjugate harmonic function employs the following theorem:
Theorem 3. Let u1 = ∂u/∂x and u2 = ∂u/∂y. Then
f '(z) = u1(z, 0) - i u2(z, 0)
Derivation. We have already shown that
Putting y = 0, we get f '(x) = u1(x, 0) - i u2(x, 0)
Then replacing x by z we obtain f '(z) = u1(z, 0) - i u2(z, 0)
Solution. Since u = e-x(x sin y - y cos y) , we have
u1(x, y) = ∂u/∂x = e-x sin y - xe-x sin y + ye-x cos y
u2(x, y) = ∂u/∂y = xe-x cos y + ye-x sin y - e-x cos y
Applying Theorem 3 we get
f '(z) = u1(z, 0) - i u2(z, 0) = 0 - i(ze-z - e-z) = - i(ze-z - e-z)
Integrating with respect to z we obtain, except for a constant,
f(z) = i ze-z
If one then expands the right side in terms of x and y, one obtains
f(z) = e-x(x sin y - y cos y) + i e-x(y sin y + x cos y)
giving
v = e-x(y sin y + x cos y)
Source: Spiegel. Complex Variables (Schaum). p. 73, 74, 85. Prob. 7, 8, 40, 101