[ Home ] [ Up ] [ Info ] [ Mail ]

Roots of complex numbers in polar form. The n distinct n-th roots of the complex number


           z = r( cos θ + i sin θ)


can be found by substituting successively k = 0, 1, 2, ... , (n-1) in the formula



ole.gif



Derivation. Let z = r( cos θ + i sin θ) and w = ρ(cos φ + i sin φ) be an n-th root of z. Then by De Moivre’s formula


1]        ρn(cos nφ + i sin nφ) = r( cos θ + i sin θ) .


Consequently,

 

3]        ρn = r

 

4]        cos nφ = cos θ

 

5]        sin nφ = sin θ .



Thus


ole1.gif


What values of φ will satisfy the conditions of 4] and 5] above? Well, 4] and 5] are satisfied if and only if

 

7]        nφ = θ + k·360o


or, equivalently,

 

8]        φ = (θ + k·360o ) / n


where k = 0, 1, 2, ...


Therefore, any n-th root of z must be one of the numbers


ole2.gif


where k = 0, 1, 2, ...



 







[ Home ] [ Up ] [ Info ] [ Mail ]